
Abstract
Salt marshes are an ecologically valuable coastal habitat under threat from sea-level rise

(SLR) imposed by anthropogenic climate change. In recent years, field researchers report

finding shallow inundated pools forming on the high salt marshes in New England, causing

Spartina patens die-back. These die-off pools could be evidence of increased rates of rapid SLR

altering the process of high marsh accommodation to sea level, which is well understood under

previously slower rates of rapid SLR. However, die-off pool extent and distribution, as well as

marsh variables contributing to their formation, are not well documented given how recently they

have developed. This thesis explores these variables through a spatial analysis conducted with

QGIS on imagery collected and classified via algorithm by the UAS salt marsh research group at

the University of Massachusetts Amherst. Raster analyses reveal relationships between bare

ground formation and elevation relative to sea level, providing an avenue to validate the

probability of inundation in the classification algorithm. This research has important implications

for marsh conservation as successful restoration plans rely on updated and accurate

information detailing the current state of a marsh. These results also provide an avenue for

future research into the factors influencing die-off pool formation, ultimately allowing

conservationists to better address this recent development in the impact of SLR on salt

marshes. Here, I present the results of an analysis conducted on the Red River marsh in

Harwich and Chatham, Massachusetts, to delineate the extent of die-off pools and identify

correlative variables.

1



Introduction

This thesis broadly concerns the effect of sea-level rise (SLR) on salt marshes.

Salt marshes are well understood as an ecological hotspot for primary productivity and

the proliferation of many ecologically relevant and commercially important wildlife

species. This coastal ecosystem is defined by the tidal input of saltwater, which creates

a saline environment where halophytic wetland plants thrive and outcompete terrestrial

species. The combined impacts of a strong salinity gradient and competition result in

the vertical zonation of marsh plants, with species adapted to deep, frequent inundation

occupying the low marsh. Saltwater tides reach the high marsh less frequently, where

vegetation is not tolerant of deep or frequent inundation.

The hydrologic processes and vegetation community structures that define salt

marshes contribute to the functionality of marsh ecosystem services. An ecosystem

service is a benefit to the natural environment and humans that exists due to the health

of that ecosystem. An example of an ecosystem service salt marshes provide is storm

surge protection. A healthy salt marsh with a variety of vegetation can buffer incoming

waves by slowing the water velocity as it passes through the marsh, protecting coastal

communities and inland ecosystems from storm damage. However, if this marsh suffers

from degradation in the form of habitat loss or through other processes that reduce the

quantity and diversity of vegetation, it cannot perform this ecosystem service to the

same extent. Other marsh ecosystem services include providing nursery habitat for

various wildlife, water filtration, and carbon sequestration. Marsh health impacts these

services and is often directly compromised by anthropogenic actions such as damming

or coastal development. Climate change is readily understood as one of the most
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significant impacts humans have on the natural environment, though the exact

mechanisms and effects of this process vary by multiple factors in salt marshes.

Researchers have posited many predictions related to the impacts of climate

change on marsh ecosystems around the globe. One of the primary effects climate

change has on salt marshes is related to sea-level rise. SLR is a result of glacial melting

and the expansion of seawater as it warms. As sea levels rise, infrequently flooded

areas of the marsh experience greater levels of inundation. The vegetation in these

areas is not adapted to deep, frequent flooding stress, resulting in die-back.

Areas of die-back become bare ground; since plant roots no longer trap

sediment, erosion rates increase in these spots. Halophytic low marsh species can also

colonize die-back patches, but these plants have a lower ecological value on the high

marsh due to their reduced functionality as habitat for marsh fauna, making this

transition unfavorable. Another impact to marsh functionality imposed by SLR is the

reduction of storm surge protection, which is a function of marsh vegetation’s capacity

to reduce wave velocity. As flooding stress increases in duration and extent, more

marsh vegetation is lost, and wave velocity is not reduced as it would be in a healthy

marsh. SLR resulting from climate change clearly threatens the resilience of marsh

ecosystems and reduces their ability to provide critical ecosystem services.

Salt marshes can compensate for SLR over long periods by migrating landwards

as gradual changes in sea level shift the salinity gradient inland. For marshes to

compensate horizontally for SLR, there must be undeveloped land adjacent to the

marsh for it to occupy as it migrates, and the change in sea level must be gradual over
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an extended timeframe. Human action has disrupted this compensatory mechanism by

developing coastal infrastructure and increasing the rate of SLR, a direct effect of

climate change. These processes in tandem are defined as coastal squeezing since the

marsh undergoes habitat loss on the aquatic border and is unable to transgress inland,

squeezing the marsh into a smaller area. Marshes can also compensate for SLR

through vertical processes that increase elevation; tides and rivers carry sediment to the

marsh, where it settles and accumulates. Both horizontal and vertical compensatory

processes are influenced by multiple variable abiotic and biotic factors that introduce

complexity to modeling these systems.

Addressing and correcting ecosystem degradation requires not only a complete

understanding of the system but an effective framework of legislation, policy, and

regulation built around this knowledge to facilitate successful, large-scale restoration.

While effective to a degree, environmental policy in the United States will only be

improved upon when a window of opportunity emerges that motivates action. A policy

window opens when an apparent problem is defined, a feasible action to address the

problem is brought forward, and sufficient political pressure motivates action. Most

legislative and regulatory actions implemented to mitigate the effects of ecosystem

degradation occur when the effects of ecosystem degrading processes are visible and a

causal relationship between stressor and response can be identified. In other words,

clarity surrounding an ecological issue motivates legislative action.

In the case of marsh degradation, decades of research clarify some of the

ecosystem impacts related to SLR, though the complexity of this ecosystem hinders this

process. Marsh degradation is visible, though its degree of evolution over multiple
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decades is not. Furthermore, marsh ecosystems are constantly evolving as energy and

material flow through the system, suggesting that any observed change in marsh

dynamics could be part of an equilibrating process unrelated to climate change. While

there has been much progress in enacting protective wetland legislation in the U.S.,

gray areas in our understanding of marsh dynamics complicate efforts to propose

feasible, effective action to correct or prevent degradation. A solution to these

complications could be continuing to collect and analyze data in the hopes that we can

open a policy window that effectively addresses marsh degradation caused by climate

change.

The unfortunate consequence of waiting for irrefutable evidence before taking

action to combat degradation is that potentially less intensive preventative measures

are few and far between. Additionally, degradation can, in some cases, sustain itself via

feedback loops, indicating that waiting for degradation to occur can increase the risk of

permanent damage or reduced ecosystem functionality. These feedback loops are of

concern globally, where scientists are trying to predict the timing of climate change

tipping points. Identifying the timing of such processes enables us to set management

goals and implement policies that reduce the likelihood of reaching tipping points,

preventing future degradation. Climate ecologists and similar professionals are

managing this same process in the marsh conservation field, where they voice their

concerns about the potential feedbacks SLR could alter on salt marshes and how this

process could degrade ecosystem services. However, there is not a single feasible

action to mitigate these negative impacts due to high levels of variability in ecosystem

resilience and factors contributing to vulnerability between marshes. This complicates
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our ability to enact both proactive and reactive policies. Furthermore, marsh restoration

efforts do not address the root cause of climate change, and solutions to climate change

take time to implement and return results. In total, addressing ecosystem degradation

related to climate change requires a multifaceted approach whereby implementation of

protective and restorative policies reduce the negative impacts of climate change on salt

marshes. Research efforts iteratively inform this process through the identification of

critical marsh dynamics, which illuminate areas of improvement in the mechanisms of

restoration or policy implementation.

Over the last three decades, researchers across many environmental fields

published numerous peer-reviewed reports that record their observed impacts of SLR

on salt marshes in New England. In most if not all of these papers, the authors

emphasize many gaps in knowledge we have yet to clarify related to marsh dynamics.

These areas of emphasis currently include marsh-upland boundary dynamics and the

effect of vegetation variation on sediment transport and hydrodynamics. These

mechanisms are critical when considering the long-term impacts of SLR on salt

marshes. While this thesis does not intend to address these areas directly, it will touch

upon some of the complexities introduced by the interactions between vegetation and

hydrodynamics in understanding present-day marsh response to SLR. More specifically,

this analysis explores the intricacy of classifying and interpreting spectral data in a

highly heterogeneous and dynamic environment.

Salt marshes are very complex ecosystems with many interacting variables

controlling a marshes response to various stressors, making modeling marsh systems

in the hope of predicting their response to climate change a difficult endeavor. Predictive
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modeling, which utilizes machine learning to forecast the future based on historical

response and the current state of the system, is a powerful tool for assessing complex

marsh systems. One of the most significant challenges to predictive modeling of marsh

response to climate change, aside from existing knowledge gaps related to critical

factors, is our inability to base future response on historic response. This challenge

arises from the fact that the rate of present-day SLR is significantly greater than it was

historically, altering the temporal scale of change in marsh dynamics. Altering this

stressor’s time scale changes how it impacts the marsh system, which reduces the

utility of historical data in predictive marsh modeling. Therefore, developing accurate,

informative predictive models relies on identifying and quantifying critical marsh

mechanisms, collecting accurate input data, and defining best practices for delineating

marsh land cover characteristics.

Many iterations of cumulative effort in developing applicable marsh models have

allowed researchers to extrapolate the resilience of marshes under rapid SLR. However,

high degrees of uncertainty or conflicting conclusions arise from imperfect input data

and model assumptions. For example, different model parameters for sediment

availability influence the model’s conclusion of overall marsh resilience, where fixed

sediment supplies indicate higher resilience (Farron et al. 2020). This discrepancy

results from model assumptions related to factors controlling sediment supply, which are

necessary due to our incomplete understanding of sediment dynamics. However,

technological breakthroughs in recent years expanded our capacity to collect

high-resolution data and develop accurate mapping and modeling methodology,

introducing avenues to improve predictive modeling. Diligently recording and reporting
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observed changes in marsh dynamics as they respond to climate change is crucial as it

will help researchers build more accurate models and decrease the uncertainty of their

predictions concerning the fate of salt marshes in the coming years.

Improvements to accessibility and functionality of Geographic Information

Systems (GIS) represent a significant development in improving landscape-scale

analyses. Such spatial analyses are crucial for assessing the state of an ecosystem as

a whole, which heavily influences the restoration method and management goals

related to that system. With mandatory introductory GIS courses at colleges and

universities, students studying environmental science or related disciplines enter the

workforce with hard skills developed in landscape analyses that were previously only

developed as a specialist skillset. This educational framework encourages further

growth in GIS and landscape-scale assessments by promoting system-level thinking

and integrating multidisciplinary action into management decisions. GIS established

itself as a primary management tool thanks to its ability to conduct large-scale

assessments of ecological conditions with relative ease and display results accessibly

through mapping, which provides a medium for communication and education. The

integration of GIS with other technological advancements only expands upon the utility

of this technology in improving our understanding of ecological dynamics and the

accuracy of the predictions they inform.

Remote sensing plays a critical role in modern ecological analyses. Beginning in

the 1960s and 1970s, remote sensing imagery collected via satellites allowed for global

scale classifications of Earth’s surface. In the past ten years, continued technological

advancements produced smaller camera systems and sensors fitted to Unoccupied
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Aerial Systems (UAS). Concurrent progress in research applications of UAS facilitates

collecting small-scale, high-resolution datasets at relatively low cost with high

operational flexibility. This allows researchers to access state-of-the-art data collection

tools and apply them to the temporal and spatial scales best suited for their studies.

With regard to salt marsh assessments, this is a beneficial attribute of UAS

technology since data collected for inundation analyses requires high temporal

specificity related to tide cycles. Further growth in this field includes the development of

sensors, such as short wave infrared (SWIR) sensors, that expand the spectral

absorption features available for analysis, improving the accuracy of vegetation

analyses. This sensor and others provide new avenues to conduct landscape-scale

assessments based on more accurate metrics of ecological resilience.

Research assessing the condition of salt marshes as SLR progresses, as with

many other fields, is a multidisciplinary, multi-step process. It requires the insight of

ecologists, hydrologists, climate scientists, spatial analysts, and remote sensing

technicians at a minimum. Independent basic research in these disciplines leads to

breakthroughs in knowledge and technology that inform the next iteration of

collaborative research. This thesis finds itself integrated into this process as it seeks to

unite the capability of modern mapping and GIS technology with ecological principles to

fine-tune a marsh landcover classification output. The united goal of work done to

improve marsh classifications is to provide accurate baseline information related to the

current state of salt marshes, which informs both management practices and further

research in the world of predictive climate change modeling.

9



Summary of Work of Previous Researchers

Previous research addressing salt marsh response to sea-level rise (SLR) can be

separated into three functional groups:

● Work in identifying marsh dynamics and their response to SLR-induced

stressors.

● Work in predicting marsh response to SLR using models.

● Work in improving image analysis, modeling, and mapping.

Each group represents a crucial aspect of understanding and addressing the

effects of climate change on salt marshes, though there are various regions of overlap

between them. In concert, these research domains work to best inform management

and conservation groups in defining the marsh characteristics that reduce their

resilience against SLR. This thesis works at the intersection of these groups as it aims

to identify marsh response to an SLR-related stressor using image analysis and

mapping.

An essential characteristic of salt marsh dynamics relevant to this thesis is their

ability to compensate for rising sea levels. SLR compensation occurs through many

nonlinear ecogeomorphic feedbacks that increase elevation - vertical processes - or

allow the marsh to transgress landward - horizontal processes. In principle, marshes

must gain elevation at a rate equal to or greater than that of relative sea-level rise to

persist in their exact location over time (Smith 2009, Kirwan and Megonigal 2013,

Fagherazzi et al. 2020). Marshes can gain elevation through multiple processes both

above and below the marsh surface.
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Above ground, sediment deposition plays a vital role in adding elevation to the

low marsh. Tidal flooding carries sediment in the water column, which settles onto the

inundated marsh, increasing elevation over time. This process implies that low marshes

closer to sea level have a greater rate of tidal sediment deposition than low marshes at

higher elevations as more of the low marsh experiences flooding (Kirwan and

Megonigal 2013). However, this deposition rate is also dependent on the concentration

of suspended sediment (SSC) in the tidal column, which is a function of multiple

sources - fluvial, oceanic, and erodible (Weston 2014). Dam building and other

environmental modifications drastically reduce fluvial sediment supply to marshes,

decreasing the rate of elevation gain and, therefore, marsh resilience under rapid SLR

conditions (Weston 2014). Plant shoots also contribute to elevation gain by slowing

water velocity, allowing particulates to settle and reducing erosion rates. Plants further

contribute to elevation gain by supplying organic matter to the surface as they

decompose (Kirwan and Megonigal 2013). Evidently, many abiotic, biotic, and

anthropogenic factors influence sediment deposition, increasing the complexity of

modeling this process.

Below ground, root growth and decay add organic matter to the soil, increasing

elevation via sub-surface expansion (Kirwan and Megonigal 2013). Notably, flooding

stress impairs below-ground plant growth more so than above-ground growth (Payne et

al. 2019). This process implies that as sea levels encroach further up marsh platforms,

inundation intolerant species experiencing flooding stress will contribute less to

elevation gain through sub-surface expansion than they do currently. However, factors

influencing the rate of sediment supply and the contribution of various species to
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organic matter production, sub-surface expansion, and sediment transport represent

some of the current gaps in knowledge in salt marsh dynamics and response to SLR

(Fagherazzi et al. 2020). Nevertheless, these processes represent the base functionality

of salt marshes to gain elevation.

Sea-level rise can impact marsh dynamics in a manner that reduces the capacity

of the marsh to respond to various stressors, including continued SLR. As previously

stated, flooding stress impairs below-ground plant growth across species, implying SLR

inhibits a marsh’s ability to gain elevation via sub-surface expansion (Payne et al. 2019,

Fagherazzi et al. 2020). This dynamic process is particularly problematic in the high

marsh, where sediment limited areas gain elevation primarily through sub-surface

expansion (Payne et al. 2015). Payne et al. also noted that shoot growth reduces with

flooding stress, suggesting SLR could trigger higher erosion rates since less

above-ground biomass is available to slow wave velocity. However, tidal flooding can

redeposit erodible sediment on the marsh, introducing an avenue to temporarily

increasing vertical accretion (Weston 2014). Unfortunately, with higher wave velocity,

sediment is not only less likely to settle, but with less plant biomass to trap the

sediment, vertical accretion by sediment deposition is reduced at multiple steps in the

process (Leonard and Croft 2006).

Furthermore, lower production of plant biomass resulting from flood stress

implies that this organic matter input into the soil is smaller, reducing the capacity of

vertical accretion and sub-surface expansion to contribute to increasing marsh elevation

(Smith 2009). Combining these processes’ diminished capacity to increase marsh

elevation only elicits more flood stress on the system, creating a dangerous positive
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feedback loop (Leonard and Croft 2006, Smith 2009). Flood stress reduces the

productivity of marsh plants, which in turn reduces the capacity of multiple mechanisms

to increase marsh elevation.

Sediment dynamics represent one of the most significant current gaps in

knowledge related to understanding marsh response to SLR (FitzGerald and Hughes

2019, Fagherazzi et al. 2020). However, research establishes that the response of

marshes to SLR is highly dependent on sediment availability. Tidal inundation plays a

significant role in distributing sediment over a marsh, motivating research into its

influence on marsh resilience against SLR. Marshes with the highest deposition rates

are low in elevation with a long inundation period, whereas marshes with higher

elevations and infrequent flooding have the lowest deposition rates (Kirwan and

Megonigal 2013). Longer inundation periods allow more sediment to settle, increasing

vertical accretion (FitzGerald and Hughes 2020), though elevation influences the extent

of inundation.

Salt marsh dynamics are also heavily influenced by platform elevation and its

variation within a marsh system. On average, marshes with a higher mean elevation

can resist horizontal compensation for SLR through high marsh retreat, or

transgression, while withstanding rising sea levels (Raposa et al. 2017). This

relationship indicates that naturally higher marshes and marshes with high accretion

rates are resilient against SLR without compensating through landwards transgression.

However, the rate of relative SLR is higher than that of elevation gain in 58% of salt

marshes in the United States (Cahoon 2015), suggesting that many marsh’s responses

to SLR will depend on their ability to compensate horizontally by transgressing inland.
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In salt marshes undergoing high marsh retreat, steeper elevation gradients

correspond to lower rates of vegetation transition from S. patens, a non-halophytic

species, to halophytic S. alterniflora (Smith 2009, Raposa et al. 2017). A marsh may

exist on a naturally steep elevation gradient, or it could experience high rates of organic

matter deposition on the high marsh. These marsh conditions could be a protective

property of such marches in the face of SLR as they can endure higher sea levels with

minimal degradation of the high marsh plant community. However, steep elevation

gradients inhibit the landward transgression of the marsh-upland border (Raposa et al.

2017). This topographic property could prove problematic if relative SLR exceeds

vertical accretion on a marsh unable to compensate horizontally due to a steep

elevation gradient. Marshes may also be limited in their ability to transgress inland by

coastal infrastructure, including purposeful barriers to marsh migration meant to protect

valuable upland property, introducing complexity to the removal of marsh transgression

barriers (Fagherazzi et al. 2020). Should such marshes be unable to compensate

vertically, they will experience coastal squeeze whereby the marsh area decreases as it

erodes or drowns (Langston et al. 2020).

Many decades of research have gone into discerning these ecosystem

processes as well as their response to SLR. In 1993, Warren and Niering documented

the first observed effect of sea-level rise on southern New England salt marshes. They

noted the replacement of Spartina patens on a Connecticut high marsh with the more

salt-tolerant low marsh species Spartina alterniflora. This shift in the high marsh-low

marsh vegetation border is a typical initial response of marshes to SLR, especially when

sea-level changes over long periods as it has in the past (Smith 2009, Raposa et al.
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2017, Fagherazzi et al. 2020). Intuitively, extrapolating the future response of marshes

to SLR could be done based on their historic response. However, this method is

imperfect due to anthropogenic influence that alters essential (and previously

untouched) feedback mechanisms contributing to resilience (Kirwan and Megonigal

2013). The recent acceleration of SLR motivates the development of models that aim to

predict the dynamic response of marshes to anthropogenic modification and climate

change stressors.

Several widely accepted salt marsh models seek to predict the response of

marshes to SLR. Ecological models exist on a continuum of complexity ranging from

one-dimensional exploratory models to three-dimensional simulations, offering various

levels of utility. The Marsh Equilibrium Model (MEM) is a one-dimensional model that

predicts relative SLR and marsh elevation rates for optimizing plant growth and

maintaining marsh equilibrium (Morris et al. 2002). In using this model, Morris et al.

determined that an optimally productive marsh is more vulnerable to SLR than at lower

production levels since optimal production occurs at lower relative elevations. Findings

such as these are crucial as they inform marsh managers that optimal productivity

should not be set as a restoration goal since it reduces resilience. Various other more

complex three-dimensional marsh models have incorporated the MEM as a model

component as this field has grown.

Another prominent marsh model, the Sea Level Affecting Marshes Model

(SLAMM), predicts the location and timing of any change in inundation resulting from

SLR and was one of the first landscape-scale models to incorporate vertical accretion

dynamics (Stamp et al. 2019). The most notable numerical models, such as the
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SLAMM, are point-based, simulating the complex relationship between inundation

frequency and vertical accretion, though sediment deposition rates are simplified as a

function of elevation (Langston et al. 2020). However, complex feedbacks between plant

productivity, tidal flooding, sediment availability and transport, and the variability of

these processes between marshes complicate modeling salt marsh dynamics (Kirwan

and Megonigal 2013). Models also inherently carry assumptions that reduce their

versatility and increase the uncertainty surrounding their predictions. Despite these

assumptions, the SLAMM outputs related to marsh land cover change carry significant

implications related to decision-making surrounding marsh restoration priorities.

Modeling to map marsh processes or land cover is a valuable tool for testing

hypotheses related to interactions between marsh processes, which elucidates the

long-term response and resilience of these ecosystems (Fagherazzi et al. 2012).

Several models predict the conversion of New England high marshes to low marsh

within the next 100 years (Farron et al. 2020, FitzGerald et al. 2020). Timelines of marsh

response to increased SLR scenarios are a critical management tool when considering

various courses of action to preserve these ecosystems. Modeling has also shed light

on the time lag in marsh response to stressors, suggesting a marsh may take decades

to equilibrate after a disturbance (Kirwan and Murray 2007). Without implementing

modeling and mapping into research surrounding salt marshes, many crucial

breakthroughs in our understanding of marsh dynamics would remain undiscovered.

However, researchers in this field emphasize the need to address multiple

underdeveloped domains of knowledge. These include the need to fill gaps in

knowledge related to interrelationships between marsh dynamics, the need to collect
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more comprehensive data to inform models, and the need to improve model building

(FitzGerald and Hughes, 2019, Ganju et al. 2020, FitzGerald et al.,2021). For example,

Gustafson (2013) questioned the robustness of predictions based on phenomenological

models and suggested mechanistic approaches should be considered when feasible.

However, such adjustments to model mechanisms, such as developing a

three-dimensional model considering both lateral and vertical marsh processes, require

continuous input data that cannot be collected at discrete points in the field (Ganju et al.

2020).

With recent developments in Unoccupied Aerial Systems (UAS) technology,

acquiring high spatial and high temporal resolution imagery is more affordable and

feasible than in past years (Pashaei et al. 2020). This accessibility, along with

developments in algorithm building, opens the door to applying deep convolutional

neural networks to marsh land cover mapping, which addresses the challenge imposed

by low inter-class variability in salt marshes (Pashaei et al. 2020). Improvements in data

collection and processing begin to address some of the challenges inherent to

comprehensive marsh analyses: collecting sufficient and accurate data, classifying

marsh land cover, and accurately delineating the ecogeomorphic feedbacks that define

salt marshes.

Explanation of Current Methodology and Goals

The goals of this thesis are integrated into the larger goals of the research project

it assists. This research project, conducted through the University of Massachusetts
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Amherst, aims to develop an algorithm that will accurately classify salt marsh land cover

characteristics using spectral imagery. In doing so, the research group hopes to develop

a technology that can be applied to other marshes and used as a management tool for

identifying priority restoration projects and setting monitoring standards. Ideally, this

algorithm could be applied to LANDSAT imagery, providing an opportunity to assess

marsh conditions on a global scale. While such large-scale analyses have been

compiled before, it is necessary to reassess marsh condition both as time passes and

as knowledge and technology improve.

More pertinent to this thesis are the goals related to identifying high marsh die-off

patches and their relation to elevation, though completing this data exploration also

allowed us to explore the algorithm’s accuracy. Refining the algorithm is a multi-step

process consisting of producing a preliminary classification output, exploring the output

and identifying misclassifications, making adjustments to the algorithm, and repeating

this process of data exploration and algorithm modification until the desired result is

achieved. A salt marsh research team member handles algorithm correction, and thus

the suggestions made by this thesis are handed to her and the rest of the team for

implementation. This thesis contributes to the algorithm’s refinement primarily through

data exploration to identify misclassified areas. This research has been ongoing for over

three years and will continue well after the completion of this thesis. Therefore, the

improvements I suggested during team meetings represent only some preliminary

changes to the algorithm and associated methodology before finalization.

One of the primary goals in developing this algorithm is to map inundation

accurately. Inundation is a critical variable related to die-off formation, though the exact

18



relationship remains elusive because of the complex feedbacks inherent to marsh

hydrology. As previously mentioned, remote sensing of wetlands presents unique

challenges due to the obstruction of inundation by vegetation and the spectrum of soil

wetness that sensors cannot differentiate. This implies that while remote sensing can

play an important role in delineating the relationship between die-off and inundation,

marsh dynamics still complicate this methodology. Since research in wetland spatial

analyses emphasizes this challenge as a significant barrier to accurate mapping, this

thesis does not anticipate finding a perfect solution. It does, however, seek to suggest a

method for delineating inundation using imperfect, though readily available, elevation

and tide data.

The other primary goal of this thesis is to identify areas where die-off pools

appear to be forming on the high marsh and identify any significance related to

elevation, a useful proxy of inundation. A critical attribute of these pools is their shallow

depth compared to other potential water features on a marsh. Unfortunately, there is no

way to identify the depth of any inundated areas using what data are available.

Therefore, die-off pool identification is based on other attributes such as size and

location. There are no hard and fast metrics defining what constitutes a die-off pool

versus other marsh water features, so this analysis primarily identifies areas that are

likely die-off pools.

I completed this analysis using data collected on the Red River marsh. This

marsh is in Harwich and Chatham Massachusetts on Cape Cod. The Red River runs

through the middle of this marsh, discharging into the Nantucket Sound after passage

through a culvert under Deep Hole Road. The study area is roughly 50 acres not
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including the upland vegetation or Red River beach captured in some imagery, which

are visible in Figure 5 of Appendix A. This marsh is relatively low in elevation with visible

ditching scars running off of major water features.

For the entirety of this analysis, I worked off of an orthomosaic image, a Digital

Elevation Model (DEM), and two raster outputs from the classification algorithm (see

Appendix A). I am working with data from the first rounds of imagery collection done

through the spring and summer of 2019/2020. The research team produced the DEM

using Agisoft software on spectral data collected via drone. Since vegetation obstruction

affects the elevation data, this output DEM is not an accurate measure of marsh surface

elevation unless bare ground or water features are visible. This discrepancy is

addressed in my analysis through a DEM correction.

The research team used imagery collected at high tide to classify water and bare

ground features to avoid mistaking inundated patches for actual bare ground features

when they are drained at low tide. They selected this methodology to best capture

marsh inundation. Conversely, vegetation was classified using low tide imagery as this

guaranteed inundation did not mask flooded vegetation. The group established this

methodology after the initial classification, run on a stack of images spanning the entire

tidal cycle, misclassified large areas of water/bare ground as vegetation due to mixed

spectral signals at these locations. I completed all spatial analyses in Quantum GIS

(QGIS), an open-source GIS software.

I based the first method to determine inundation extents solely on the original

DEM values calculated using Agisoft. On average, these elevation values overestimate
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the actual elevation of the marsh surface, though the degree of overestimation varies by

plant species as they grow to different heights. This original DEM, therefore, represents

a conservative estimate of inundation extents. To determine ecologically relevant

thresholds of elevation corresponding to frequent inundation, I analyzed tide data

collected over the calendar year 2020 at Saquatucket Harbor, the closest tide station to

the Red River marsh. These data were available through the National Oceanic and

Atmospheric Administration’s (NOAA) Tides & Currents website.

I began in Excel by calculating three-day running averages, encompassing six

high tides each, of the high tide elevations for each month. These data are reported in

the NAVD88 datum. I selected the highest high tide 3-day average within each month,

representing spring tide levels, and the lowest high tide 3-day average, representing

neap tide levels. Next, I calculated the average of all high tide levels over the year to

obtain the mean high tide (MHT), which is 0.447m. I then averaged the spring tides and

the neap tides from all 12 months to acquire the 2020 annual average spring and neap

tide elevations (0.626m and 0.303m, respectively). The MHT acts as a midpoint

between the annual average spring and neap tide levels. By finding the midpoint

between the annual average spring tide and MHT, I identified the upper bound of

frequent inundation that may correspond with die-off formation: 0.536m. Similarly, by

finding the midpoint between the annual average neap tide and the MHT, I identified the

lower bound of critical inundation extent: 0.375m. These values are tabulated in

Appendix B.
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I produced a Boolean raster delineating areas on the marsh with elevation values

between the critical inundation thresholds using the following expression in the QGIS

Raster Calculator:

“DEM@1” <= 0.536 AND “DEM@1” > 0.375

I did so first on the original DEM, producing the layer Original_Inundation, then

again on the corrected DEM, producing Delta_Inundation. Doing so allows for a later

comparison of the impact applying a corrective elevation factor has on calculated

inundation extents and the conclusions one might draw from them. Figure 1 displays

these inundation extents over the marsh DEM.
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Figure 1: Critically inundated marsh surface

Critical inundation corresponds to elevations between 0.375 meters and

0.536 meters. Green pixels represent DeltaDEM derived inundation and

yellow pixels represent original DEM derived inundation.

The methodology employed to apply correction factors to the original DEM

involved using Real-Time Kinematic (RTK) elevation data. The research group collected

ground-truthed elevation values at over 300 points on the Red River marsh in locations

that included all vegetation and bare ground classes and one of the water classes. I

found the difference between the DEM value and the ground-truthed points at each
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sample location using Google Sheets. Next, I calculated the average, median,

minimum, and maximum values for the delta values within each class. Not every class

was evenly represented during ground-truthing, but most importantly, all of the

vegetation subclasses were included. After assessing the range, mean, and median, I

determined the median to be the best delta metric for this dataset as they are slightly

lower than the mean values on average, reducing the likelihood of overcorrection.

These delta values are tabulated in Appendix B.

To subtract the delta values from the DEM in locations corresponding to their

respective classes, the vegetation and water/bare ground classification rasters need to

be reclassified so that the pixels store their classes’ delta value rather than their

classification ID number. I did these reclassifications on each raster separately with the

Reclassify by Table tool in QGIS. Each class corresponded to a row in the reclass table

with the new output values set as the delta value for that class. This tool produced two

new rasters holding each class’s delta value where that class exists, DeltaVeg (for

vegetation subclasses) and DeltaWBG (for water and bare ground classes). Before

running this reclassification, I ensured the relevant rasters were displayed in the same

projection, NAD83 / UTM zone 19N, and had the same pixel size and extent, ensuring

proper alignment. I achieved this result using the Align Rasters tool, where I set the

output layers to match the cell size of the vegetation classification raster, preserving

these classifications spatially.

After running the Reclassify by Table tool, data inspection revealed that this tool

changes the pixel size of the output layer by approximately 3.8 x 10-15 despite no user

interaction with this layer property. This pixel size adjustment creates a shift in the data
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so that it no longer properly aligns with the DEM, as seen in Appendix A, and it must

align for subsequent steps of the DEM correction. To correct this misalignment, I used

the Align Rasters tool to align DeltaVeg and DeltaWBG to the previously aligned original

VegClasses raster. This method failed to resize the delta raster’s pixel sizes properly, so

I instead aligned the original DEM, not the previously aligned one, to the delta rasters.

Fortunately, this DEM aligned with the delta rasters’ cell size and extent. It also held

precisely the same elevation values after alignment with the delta rasters as it did when

aligned to the original classification rasters.

Next, I subtracted the reclassified vegetation raster, DeltaVeg, from the delta

aligned DEM using the Raster Calculator with the expression:

“DEM@1” - “DeltaVeg”

This tool produced a new DEM titled DEM_DeltaVeg. This calculation also

changed the pixel size of the output layer, which I corrected via realignment with the

DeltaWBG raster extent and pixel size. Since DeltaVeg held 0 values in pixels covering

water or bare ground features, the output DEM_DeltaVeg remained unaltered in these

areas. This 0 class allowed for the use of the Raster Calculator once more to subtract

DeltaWBG from DEM_DeltaVeg using the same syntax as the above expression. The

final corrected DEM, DeltaDEM, represents a more accurate interpretation of elevation

over the Red River marsh’s vegetated areas. As mentioned above, the final step of this

second inundation analysis involved using the Raster Calculator to derive the extent of

the marsh within the critical inundation threshold range according to the new DeltaDEM.
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The final step of this methodology serves to determine the quantitative difference

between the inundated area based on the original DEM and the inundated area based

on the delta DEM. The inundation rasters must be clipped to the classification extent to

obtain relevant percentages of inundation. Clipping required vectorizing a merged raster

of the vegetation and water/bare ground classifications, fixing the invalid geometries,

and dissolving the resulting polygon to produce a single polygon of the classified extent.

The Dissolve tool produced a polygon with holes over pixels with negative values in the

classification raster, aptly named MarshExt_wHoles. These negative values result from

data transformation during the merging of the two classification rasters, and while this

raster no longer holds ecological relevance, the values of these raster pixels are

unimportant at this step.

To fill the holes, I created a new polygon shapefile covering the extent of

MarshExt_wHoles and subtracted MarshExt_wHoles from the new polygon, leaving

polygons in all hole locations. I then deleted the excess polygon to leave the new

shapefile layer with only hole polygons and merged this layer with MarshExt_wHoles to

produce ClassificationsPolygon. This output served as the mask layer for the Clip

Raster by Mask Layer tool, where the input rasters were Original_Inundation and

_Delta_Inundation. Finally, I input the two rasters resulting from this clip tool into the

Semi-Automatic Classification Plugin (SCP) Classification report tool to retrieve each

layer’s respective inundated pixel sum versus the total number of pixels covering the

marsh.

With the inundation analysis completed, I began the die-off analysis by selecting

the major water features on the marsh, namely the Red River itself, to isolate the die-off
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features in a separate layer. I did so using the SERVAL, a raster editing plugin for QGIS,

selecting the river features with the polygon selection tool and transforming the raster

data in this polygon to “nodata.” The output file, DieOffPools, retained all the water and

bare ground classified areas not related to the river or ditching activity (Figure 2).

Figure 2: Die-off pools displayed over the Red River marsh extent

Not all die-off pools are visible at this scale, though their distribution
across the marsh is readily apparent.
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To test the significance of elevation contributing to die-off formation, I started by

generating random sample points within the die-off features selected in the previous

step. This step requires conversion of the pools to shapefiles after removing the 0 class

from the DieOffPools raster. I generated 20 random points in this die-off vector using the

Random points in layer bounds tool, setting the minimum distance between points to 8

meters. Next, I buffered these points by 5 meters to capture nearby vegetation. To

sample the raster below these buffers, I used the Random points in polygon tool to

generate 80 random points within each buffer. The target sample size for each buffer is

40 elevation points to reach statistical significance in later analyses.

I oversampled the die-off buffers because some random points are likely to fall on

die-off pixels rather than vegetation pixels, and these samples must be dropped. To

identify die-off sampled elevations, I erased the DeltaDEM pixels under the die-off

vector so that any sampled values here would hold no data, making them easy to spot

and erase. Next, I used the Sample raster values tool to extract DeltaDEM values under

the 80 points in each buffer and saved the output as a comma-separated values (.csv)

file titled DieOffElevs.

To sample elevation in non-die-off locations, I began by buffering the die-off

shapefile by 8 meters and dissolving the output to produce a single polygon. I

subtracted this output from the ClassificationsPolygon created in an earlier step using

the Difference tool to retrieve a shapefile of all areas on the marsh greater than 8

meters away from die-off. I then repeated the methodology used to select sample points

in die-off areas, beginning with the generation of 20 random points at least 8 meters

away from each other. Then, I buffered these points by 5 meters with 40 random points
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generated in each buffer. Since there is no die-off in these areas, I did not have to

produce excess points to account for their presence. Once again, I saved the sampled

DeltaDEM values as a .csv file titled NonDieOffElevs.

With the sampling data collected, I began the process of data cleaning in

RStudio. I used the na.omit() function to remove all NULL values from the DieOffElevs,

which occur in sample points generated over die-off. Since this leaves untouched data

with nonconsecutive ID numbers, I edited the row names for DieOffElevs, now named

dieoff, to clean up the index numbers for the next step using the command:

rownames(dieoff) <- 1:nrow(dieoff). I then subsetted dieoff to include just 40 samples for

each buffer point by manually calling the row numbers to keep for each buffer point,

naming the output dieoff40. This data frame and the nondieoff40 data frame now hold

800 values each, which are evenly distributed across their respective 20 sample

locations and are ready to be tested for significant differences in elevation.

This data structure makes it possible to do a repeated measures Analysis of

Variance (ANOVA). However, ANOVAs require the data to be normally distributed. I

used the Shapiro Test to verify normalcy in both datasets, and neither set as a whole

was normally distributed. Since the data violates this assumption, I chose to use the

Friedman test, the nonparametric equivalent of the repeated measures ANOVA. This

test requires the data to be saved as a matrix, so I saved the elevation columns for

dieoff40 and nondieoff40 as variables x and y, respectively, before tabulating these

vectors as a matrix with two columns, titled Sample. I then ran the Friedman test on the

Sample matrix. I also ran a T-test on the x and y variables despite their violation of

normality since this test is still considered robust under normality violations. Finally, I
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tested the distribution of these datasets to determine if they came from significantly

different distributions using the Kolmogorov-Smirnov test. I also produced a plot of the

Empirical Cumulative Distribution Function (EDCF) for both datasets to visualize any

differences (Figure 3).

Figure 3: Empirical CDF for sampled die-off and non-die-off elevations.

The x-axis shows elevation within the range 0 meters to 3 meters,
which encompasses the vast majority of the dataset.
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Report and Discussion of Research Results

Inundation Analysis

This inundation analysis first required the identification of ecologically relevant

extents of critical inundation. This requires considering oscillations in high tide extents

that result from changes in the gravitational pull of the sun and the moon. By calculating

a consecutive 3-day running average of high tide levels for each month, I encapsulated

the variation of tide heights among months of the year (see Appendix B). The running

average for the first five tides of the month required prepending the last five high tides of

the previous month to the tide data for the month in question, ensuring all data points

were included. Additionally, computing this average on consecutive days preserved the

temporal frequency of inundation levels, which is crucial to consider as the frequency of

flooding impacts plant resilience. Variance among spring and neap tides is low

(0.00187, 0.00184, respectively). The lowest spring tide running average occurred in

January at 0.5517 meters, which is 0.208 meters higher than the highest neap tide

running average in May at 0.3467 meters. A paired two-sample t-test confirmed that the

spring tide averages are significantly greater than the neap tide averages (P =

5.079x10-11).

The inundation analysis resulted in the output of two Boolean rasters delineating

the extent of critical inundation on the marsh. The first inundation raster,

OriginalDEM_Inundation, is derived from the original DEM’s elevation values. The

second inundation raster, DeltaDEM_Inundation, is derived from the elevation values

held in the DeltaDEM raster. Both rasters select elevation values within the range of
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0.373 meters to 0.536 meters. The original DEM reports 2.68% of the marsh as critically

inundated, while the delta DEM reports 25.7% of the marsh as critically inundated

(Figure 1). I obtained these values through the SCP Classification report for each

inundated layer. This increase in inundation extent after DEM correction suggests

23.02% more of the marsh platform is susceptible to die-off formation than was reported

by the original DEM. Such a difference proves the necessity of carefully considering

ecological properties such as plant height when determining the accuracy of raw DEM

data.

While the application of a delta value by vegetation subclass and water/bare

ground classes to the DEM successfully reported a more plausible inundation extent, it

is crucial to consider the limitations of this method. For example, this method does not

account for intraspecies variation in plant height. A variance analysis of the delta values

derived from each ground-truthed elevation point reveals a range of variances

associated with each subclass, though all variances are less than 0.2, indicating low

variance overall. Vegetation subclass 12, representing Phragmites, held the highest

variance at 0.127. This variance could result from Phragmites invasion, where variation

in plant height could reflect various stages of Phragmites succession as suitable saline

habitat develops. The lowest variance, 0.002, belongs to the species Juncus gerardii, a

high marsh species.

It is important to consider the data’s sample size when interpreting variance. As a

statistical rule of thumb, sample sizes <5% of the population size are considered

unreliable. We can consider the population size for each subclass as the number of

pixels it covers and the sample size as the number of ground-truthed points used to
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derive the delta value for that subclass. Each vegetation subclass has a population size

on the order of 100,000 to 1,000,000, meaning a 5% sample size of even the smallest

subclass populations consists of 5,000 RTK measurements. Since I was working with

roughly 330 RTK points total, none of the calculated variances are reliable. Therefore, I

cannot accurately assess the variation among subclasses to determine if multiple delta

values for each species dependent on geographic location, such as proximity to water

features, would further refine the DEM correction. Theoretically, identifying spatial

relationships between plant height variation within a species would offer an avenue for

empirical refinement, though the degree to which this would alter resulting critical

inundation extents is unknown.

Die-Off Analysis

This analysis required the manual extraction of die-off features using the QGIS

SERVAL plugin. An alternative method such as selecting features of a specific size

through a cluster analysis could have potentially missed larger interconnected clusters

of die-off. With this in mind, I determined manual selection to be the best available

method of die-off extraction from the larger joint water/bare ground classified raster as it

provided control over the high variability in water/bare ground features. I found that

die-off features comprise 1.46% of the marsh. This percent cover could be a promising

result since the inundation analysis revealed that 25.7% of the marsh is critically

inundated and likely vulnerable to die-off formation.

Furthermore, just 33% of the pixels comprising die-off patches fell within the

critical inundation range. These ratios could suggest that the die-off patch development
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is a function of more variables than solely inundation level, implying we can promote

marsh resilience through means other than reducing inundation. These other variables

may include vegetation species and diversity or nutrient availability. Despite our

previous knowledge that marsh processes are multiply determined, these findings are

hard lines of evidence supporting that claim.

However, this die-off selection method has some limitations of its own related to

user discretion. There were multiple “edge cases,” as I defined them, where it was

difficult to discern if a water feature near the river or ditching channels was a

continuation of that feature or if it arose due to favorable die-off conditions (Figure 4). I

attempted to base my decision on as many ecological context clues as possible to

reduce the likelihood of misselection. For these edge cases, I referenced the

orthomosaic image of the marsh to provide more visual indicators of either die-off

presence or channel features. For example, some small patches classified as water

near the river channel are connected to the river system via a small channel obscured

by vegetation. These channels are occasionally misclassified as vegetation, allowing

mistaking these pools as die-off features. Upon inspection of the orthomosaic image in

such areas, it is clear these features directly connect to the river and represent a

separate ecological process contributing to pool formation. I also considered the

proximity to actual die-off patches since proximity serves as a proxy for identifying the

presence of favorable die-off conditions. Finally, any strictly linear clusters of water/bare

ground pixels were not included as die-off features as they likely represent ditches

despite their visual similarity to true die-off.
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Figure 4: Example of die-off edge cases

In this image, it is unclear whether the opaque blue pools arose because
of their proximity to a ditch (running through the center of the image) or if
SLR-driven processes resulted in their formation.

The analysis I conducted in RStudio to determine a significant difference in

elevation surrounding die-off compared to marsh areas without die-off revealed no

significant difference in elevation between these two conditions. For reference, the

mean die-off elevation is 0.61580 meters and the mean non-die-off elevation is 0.65937
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meters. The P values returned by the Friedman test and the t-test, which support this

conclusion of insignificance, were P=0.08969 and P=0.05781, respectively. Neither

P-value falls below the 0.05 confidence level, meaning neither null hypothesis can be

rejected with 95% confidence. For the Friedman test, the null hypothesis states that

there is no significant difference between the two treatments, die-off presence versus

die-off absence. The t-test null hypothesis states that the difference in means between

the two groups is equal to zero, indicating no difference. It is worth mentioning that

these results could be accepted as significant under a lower confidence level, though it

is important to consider reasons for not rejecting the null hypotheses at 95%

confidence. These tests suggest elevation does not play a role in determining the

presence of die-off, though their null hypotheses do not test for all possible variation

among data.

Given the lack of statistical significance in the difference between die-off and

non-die-off elevations, the result of the Kolmogorov-Smirnov test was unexpected. The

resulting P-value from the two-sided version of this test was well below the 0.05

significance level at P=4.107e-08. This result allows us to accept the alternative

hypothesis that these data come from different distributions. A one-tailed version of this

test also returned a P-value below 0.05 (P=2.053e-08), allowing us to accept the

alternative hypothesis that the non-die-off Cumulative Distribution Function (CDF) falls

below the die-off CDF.

To interpret this result, I referenced the empirical CDF plot of both datasets

(Figure 3). It appears that the largest difference between ECDFs occurs just below 1

meter in elevation, where there is approximately an 80% chance that you will randomly
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sample a non-die-off elevation less than or equal to slightly below 1 meter. In contrast,

there is an 80% chance that you will randomly sample an elevation less than or equal to

well below 1 meter around die-off. Essentially, at most probabilities over this distribution

function, there is a statistically significant chance that one samples a slightly higher

elevation in non-die-off areas than in die-off areas, though this difference is greater at

elevations just below 1 meter and around 0.25 meters. This difference makes sense

ecologically as we expect lower elevations to contribute to die-off formation. Despite the

failure to reject the Friedman and t-test null hypotheses stating zero difference between

the treatments/mean elevation values for die-off and non-die-off areas, the

Kolmogorov-Smirnov test reveals that die-off pools can affect the distribution of

randomly sampled elevation points.

It is necessary to acknowledge the limitations of this sampling approach in

identifying a relationship between die-off and elevation. The primary limitation derives

from failure to exclude areas of the marsh with unique elevation dynamics resulting from

variation in sediment accretion rates across the marsh. The inundation analysis

revealed that most riverbank and runnel channel edges are not critically inundated

despite their proximity to open water. While this may seem counterintuitive, it is a

well-studied effect of spillover sediment accumulating on river channel edges or spoil

piles around ditching. However, die-off still occurs close to these sediment piles. This

means random sampling of such die-off pool vegetation could be extracting elevation

values on these piles, which misrepresent the elevation of vegetation directly

surrounding die-off. This analysis did not directly consider the impact of variation in

sedimentation rates on marsh surfaces, though I suggest similar future analyses should
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intend to do so. One method for improving vegetation selection could be to reduce the

5-meter radius for buffering the random sample points to concentrate samples closer to

die-off edges, though such a correction would result in a higher percent of sample

points generating on die-off pixels.

Furthermore, my sampling method assigned equal weight to all sample locations

despite the variety of die-off characteristics they represent. Some die-off pools are

multi-pixel clusters with visible water on the orthomosaic image, while others are

comprised of one to a few pixels with few visual clues to confirm die-off. Assuming all

die-off is accurately classified, this variety likely represents multiple stages of die-off

progression that may relate to elevation in various degrees. It could be useful to

re-conduct this sampling analysis on die-off pools of similar size and structure to reduce

other variable interactions, such as die-off size. Alternatively, rasters calculated by the

salt marsh research team display the probability of inundation over the marsh and could

have been used to select die-off locations with high inundation probabilities. However,

this method could introduce a sampling bias based on the assumption that die-off

occurs in high inundation probability locations, so such a methodology should be

cautious and base its decisions on sound ecological principles. In any case, I

emphasize the importance of future research eliciting identification features for die-off

that increase our certainty of their selection.

Additionally, since the classification algorithm has not yet reached its final, most

accurate version, we recognize that the outputs I used likely misclassified some of the

pixels sampled for buffering. These potential misclassifications would mean that some

sample points could be based around “die-off” that is not truly present in that location,
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meaning they misrepresent the elevation around actual die-off patches. A more

accurate representation of die-off elevation could result if this analysis more heavily

weighted the elevations surrounding sample locations with a high probability of die-off.

However, this method is also subject to sampling bias, and thus I continue to emphasize

the importance of identifying proper die-off selection attributes to preserve statistical

power in their analysis.

Conclusions and Implications for Future Research

While salt marshes can compensate for natural rates of sea-level fluctuation,

anthropogenic climate change has increased the rate of sea-level rise over a temporal

scale that reduces the efficacy of these processes in promoting marsh resilience.

Features such as die-off pools develop due to rising tides that rapidly change the

inundation stress defining marsh plant community structure. These die-off pools reduce

the capacity of a marsh to provide critical ecosystem services. This reduction in function

motivates research projects such as this thesis to map the extent of die-off, ultimately

providing an avenue to assess the current state of die-off development.

Overall, we can conclude that the Red River marsh is experiencing die-off,

though this analysis could not define a causal link to inundation stress related to SLR.

The spatial analysis found that 1.46% of the Red River marsh surface consists of

die-off. Comparatively, 25.7% of the marsh surface is critically inundated, where critical

inundation corresponds to elevations between 0.375 meters and 0.536 meters. The

DEM correction reported a nearly 860% increase in the percent of critically inundated
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marsh surface compared to the original DEM, from 2.68% to 25.7%. A statistical

analysis testing for a significant relationship between die-off and elevation reveals no

mean difference between elevation samples taken around die-off and far from die-off.

However, the distribution of elevation values for these two variables is statistically

significant, with the ECDF for die-off elevations falling above the ECDF for non-die-off

elevations. This result implies a higher probability of sampling a higher elevation value

in non-die-off vegetation compared to vegetation near die-off.

There are areas of improvement within this thesis that could result in higher

quality DEM production. It was clear after producing DeltaDEM that this raster, despite

representing smooth elevation data, became polygonized and reminiscent of the

vegetation raster classification boundaries in some areas. I suggest future corrections of

DEMs with this method should seek to integrate a smoothing factor to account for

transitions from one class to another. Furthermore, spatial variation in intraspecies plant

height was not considered in my methodology, though this adjustment could also

improve DEM accuracy by applying delta values unique to specific patches of

vegetation subclasses.

Due to the proximity of the Friedman test and t-test P-values to the 0.05 value for

significance, I suspect improvement of my die-off elevation selection may shift this result

past the significance threshold. I base this conclusion on the results of the

Kolmogorov-Smirnov test that imply a fundamental difference in the distribution of

elevation values around die-off and far from it. This could be achieved by altering the

buffer distance, increasing sample size, and increasing the stringency of die-off
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selection criteria. Adjusting these parameters may reveal a relationship between these

variables that isn’t apparent under my current sampling methodology.

The reduction of ecosystem service functionality resulting from die-off motivates

the implementation of targeted management strategies and continued research related

to understanding marsh dynamics. Both effective management and rigorous scientific

research require accurate, detailed baseline data that allows for the development of

evidence-based conclusions. Technological advancements in remote sensing and

spatial analyses that increase the depth and computational power of ecological

analyses support the generation of reliable data.

The application of UAS technology to ecological remote sensing expands our

capacity to acquire data with high temporal and spatial resolutions by cost-effective

means. UAS, including drones, offer a high level of user preference related to the flight

time of day and collection frequency that are not accessible when using data from

satellites. Control over temporal frequency is of particular importance in the remote

sensing of tidal ecosystems such as salt marshes, where it is necessary to consider the

desired tide level during imagery collection. In a similar vein, controlling temporal

frequency also allows for selecting ideal flight dates, which might consider the timing of

growing seasons or weather conditions. Command of these variables promotes the

acquisition of maximally useful data.

This principle of control over the temporal frequency of imaging benefitted the

development of the salt marsh research group’s classification algorithm. Initially, the

team produced a classification raster of vegetation, water, and bare ground classes
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using a stack of orthomosaic images from various stages of the tide cycle. This

classification misclassified open water as low marsh vegetation in some areas.

However, data inspection revealed this was likely a result of the input imagery structure,

not the algorithm itself. To avoid these misclassifications, vegetation must be mapped at

low tide separately from water and bare ground, which are mapped at high tide. Since

the group already acquired imagery at all desired tidal heights, they could rerun the

classification with a new, two-part methodology; classify vegetation using low tide

imagery and classify water and bare ground using high tide imagery. Were it not for their

ability to preemptively select ecologically relevant snapshots of the marsh and time their

flights accordingly, the correction of these misclassifications would have required more

time, energy, and resources than it did with conscientious drone data collection.

Another impressive quality of UAS remote sensing is the high spatial resolution it

provides. Compared to satellite sensors, which collect data at a resolution anywhere

from 1 meter to 500 meters, the drone data acquired for this project was collected at an

8-centimeter x 8-centimeter resolution. This drastic increase in resolution allows for the

development of a more spatially refined marsh land cover classification. This refinement

provides a more accurate representation of marsh characteristics that is useful in

informing management decisions related to specific marsh dynamics.

In the context of this thesis, high spatial resolution is a critical data attribute as

the algorithm could detect even the smallest die-off features, which would not be visible

in coarser resolution imagery. Consequently, the inundation analysis I completed is

closer to representing actual marsh inundation than the same methodology would

suggest on coarser resolution satellite data. This is partially because many small die-off
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patches would likely miss detection, resulting in the conclusion that the study marsh is

under lower levels of flooding stress than it truly is. The differences in these conclusions

can carry divergent implications for marsh management. This makes it clear that

prioritizing the collection of high-resolution data to map die-off is a promising avenue for

improving our understanding of the extent to which SLR impacts this aspect of marshes.

Furthermore, data collected at such high resolutions allows for analyses of

spatial variation in continuous data that are not encapsulated at coarser resolutions. For

example, with relatively high-resolution satellite DEM data at a 1-meter resolution, a

single pixel would hold one elevation value over a square meter of the marsh. With

drone data at an 8-centimeter resolution, that same square meter holds approximately

144 pixels, where each pixel holds a unique elevation value for the 8 square

centimeters it represents. This increase in resolution better represents the variation in

marsh elevation and inherently improves the detail and accuracy of spatial analyses.

Moreover, such data quality improvements are a product of technological developments

that will only be better utilized as our analytical methodologies continue to evolve.

One such analytical improvement that made this thesis possible is the application

of machine learning into land cover mapping. Not only do algorithms speed up analytical

processes, but they also allow for the integration of complex decision-making metrics,

such as probability density, into the classification decision tree. When modeling complex

ecosystems, it is often difficult to reduce their mechanisms to direct, easily digestible

relationships without compromising the output’s reliability. Applying machine learning in

this field provides an avenue for mapping salt marshes in great detail and with

ecological accuracy by integrating previously unfeasible complex metrics. Furthermore,
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the speed of algorithm processing compared to manual processing allows researchers

to try more variations of their analysis in a shorter time frame. This allows researchers,

such as the salt marsh UAS group, to run increasingly refined iterations of their code,

ultimately producing an output with a higher confidence level in classification accuracy.

It also allows researchers to test more hypotheses, or test the same hypothesis in more

than one way, further increasing the confidence of their results.

Thanks to the simplicity computer software affords to complex statistical tests, I

was able to easily test my elevation data frames by more than one test of difference in

RStudio. My base knowledge of statistics was sufficient enough to ensure data

robustness under different test conditions, which allowed me to use statistical tools to

test my elevation hypothesis in various novel ways that revealed an interesting

relationship in the data. Similarly, the increased popularity of open-source software such

as RStudio and QGIS enabled me to find multiple forums throughout my analysis that

facilitated data troubleshooting. The development of these communities further

increases the accessibility of powerful software that can strengthen the analyses of

marsh monitoring data.

Future research in this domain can branch off into many unique projects, though

they all require prioritization of high-resolution data acquisition. The accessibility and

cost-effectiveness of drones in data collection provide the means to do so, and their use

should be encouraged in marsh monitoring programs. I emphasize the utility of machine

learning in mapping marsh land cover as it provides the means to process large

datasets inherent at high temporal and spatial resolutions. Future research, including
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work by the salt marsh UAS research group, should focus on improving the accuracy of

these models to implement them as a monitoring tool.

I suggest more research is needed in the study of die-off pools as they represent

a critical impact of SLR on marsh functionality. This work should aim to identify the

mechanisms by which die-off forms, the magnitude of reduction in functionality they

support, proper metrics for identification, and possible avenues of intervention. No one

project will be able to answer all, if any, of these questions at once, though the

publication of all relevant studies will play a crucial role in solving these problems,

uncovering evidence-based solutions, and implementing effective salt marsh

management.

45



Bibliography

Cahoon, D. R. 2015. Estimating relative sea-level rise and submergence potential at a
coastal wetland. Estuaries and coasts: journal of the Estuarine Research
Federation 38:1077–1084.

Fagherazzi, S., G. Mariotti, N. Leonardi, A. Canestrelli, W. Nardin, and W. S. Kearney.
2020. Salt marsh dynamics in a period of accelerated sea level rise. Journal of
geophysical research. Earth surface 125.

Farron, S. J., Z. J. Hughes, and D. M. FitzGerald. 2020. Assessing the response of the
Great Marsh to sea-level rise: Migration, submersion or survival. Marine geology
425:106195.

FitzGerald, D. M., C. J. Hein, J. E. Connell, Z. J. Hughes, I. Y. Georgiou, and A. B.
Novak. 2021, April 15. Largest marsh in New England near a precipice.

FitzGerald, D. M., and Z. Hughes. 2019. Marsh Processes and Their Response to
Climate Change and Sea-Level Rise. Annual review of earth and planetary
sciences.

Ganju, N. K., Z. Defne, and S. Fagherazzi. 2020. Are elevation and open‐water
conversion of salt marshes connected? Geophysical research letters 47.

Gustafson, E. J. 2013. When relationships estimated in the past cannot be used to
predict the future: using mechanistic models to predict landscape ecological
dynamics in a changing world.

Kirwan, M. L., and J. P. Megonigal. 2013. Tidal wetland stability in the face of human
impacts and sea-level rise. Nature 504:53–60.

Kirwan, M. L., and A. B. Murray. 2007. A coupled geomorphic and ecological model of
tidal marsh evolution. Proceedings of the National Academy of Sciences of the
United States of America 104:6118–6122.

Langston, A. K., O. D. Vinent, E. R. Herbert, and M. L. Kirwan. 2020. Modeling
long‐term salt marsh response to sea level rise in the sediment‐deficient Plum
Island Estuary, MA.

Leonard, L. A., and A. L. Croft. 2006. The effect of standing biomass on flow velocity
and turbulence in Spartina alterniflora canopies. Estuarine, coastal and shelf
science 69:325–336.

Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve, and D. R. Cahoon. 2002.
Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877.

46



Pashaei, M., H. Kamangir, M. J. Starek, and P. Tissot. 2020. Review and Evaluation of
Deep Learning Architectures for Efficient Land Cover Mapping with UAS
Hyper-Spatial Imagery: A Case Study Over a Wetland. Remote Sensing 12:959.

Payne, A. R., D. M. Burdick, and G. E. Moore. 2019. Potential effects of sea-level rise
on salt marsh elevation dynamics in a New Hampshire estuary. Estuaries and
coasts: journal of the Estuarine Research Federation 42:1405–1418.

Raposa, K. B., R. L. J. Weber, M. C. Ekberg, and W. Ferguson. 2017. Vegetation
dynamics in Rhode Island salt marshes during a period of accelerating sea level
rise and extreme sea level events. Estuaries and coasts: journal of the Estuarine
Research Federation 40:640–650.

Smith, S. M. 2009. Multi-Decadal Changes in Salt Marshes of Cape Cod, MA:
Photographic Analyses of Vegetation Loss, Species Shifts, and Geomorphic
Change. Northeastern Naturalist 16:183–208.

Stamp, J., A. Hamilton, M. Liang, J. Clough, M. Propato, L. Haaf, and J. M. West. 2019.
Application of the Sea-Level Affecting Marshes Model (SLAMM) to the Lower
Delaware Bay, with a Focus on Salt Marsh Habitat. EPA.

Weston, N. B. 2014. Declining sediments and rising seas: An unfortunate convergence
for tidal wetlands. Estuaries and coasts: journal of the Estuarine Research
Federation 37:1–23.

47



APPENDIX A: Supplemental Figures

Figure 5: Orthomosaic image of the Red River marsh

Figure 6: Digital Elevation Model (DEM) of the Red River marsh
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Figure 7: Vegetation (green) and water/bare ground (blue) classification rasters

Figure 8: Shifted vegetation raster (green) compared to original vegetation raster (grey)
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APPENDIX B: Data Tables

Table 1: Highest and lowest running averages of tide levels by month.

Month Jan Feb Mar Apr May Jun Jul

Spring Tides 0.5517 0.6000 0.6167 0.6267 0.6283 0.6000 0.5783

Neap Tides 0.2633 0.2283 0.2233 0.2833 0.3467 0.3350 0.3267

Month Aug Sep Oct Nov Dec
Annual

Average
Annual
MHT

Spring Tides 0.6450 0.6900 0.6967 0.6667 0.6117 0.6260 0.4466

Neap Tides 0.3183 0.3183 0.3250 0.3400 0.3267 0.3029

Neap
Avg

Critical
value MHT

Critical
Value

Spring
Avg

0.3029 0.375 0.4466 0.536 0.6260

Table 2: Delta values by land cover subclass

Class Subclass Delta value (m)
Vegetation 1 0.3774358344
Vegetation 2 0.2326283321
Vegetation 3 0.2298626244
Vegetation 4 0.1814786072
Vegetation 5 0.3552832251
Vegetation 6 0.179820415
Vegetation 7 0.2436995254
Vegetation 8 0.179324429
Vegetation 9 0.2108446579
Vegetation 10 0.08992824125
Vegetation 11 0.4644785309
Vegetation 12 0.6377645006

Water 22 0.1658532954
Bare ground 31 -0.005431994677
Bare ground 32 0.1874353876
Bare ground 33 0.05904247117
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